A survey for potential endocrine disruption effects in bivalves in Maryland's Chesapeake Bay

Victor S. Kennedy


University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge, MD

Carol B. McCollough Maryland Department of Natural Resources Cooperative Oxford Laboratory, Oxford, MD

Recent described locations and effects of endocrine disruption in bivalve molluscs

Target Species in Chesapeake Bay

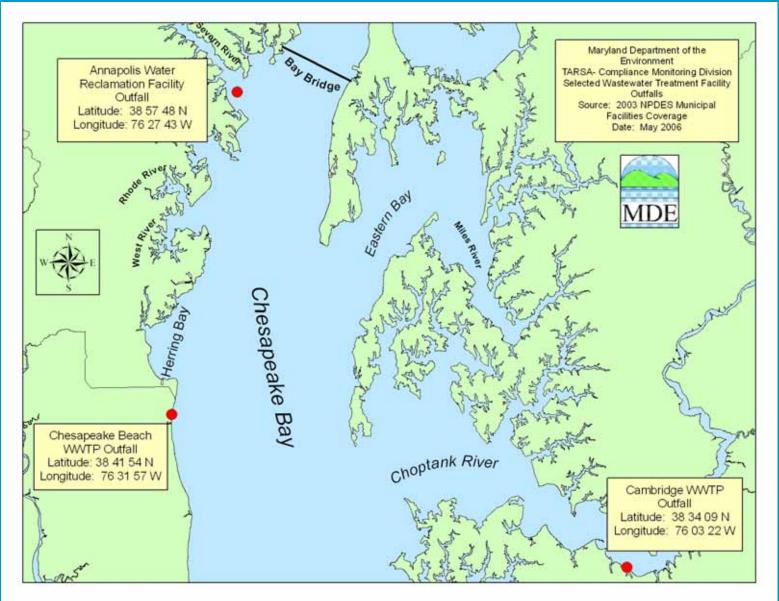
Crassostrea virginica

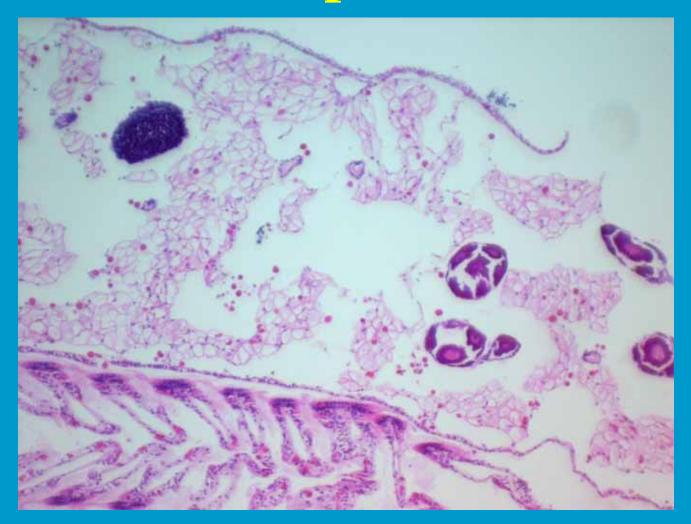
Mya arenaria

Tagelus plebeius

Ischadium recurvum

Rangia cuneata

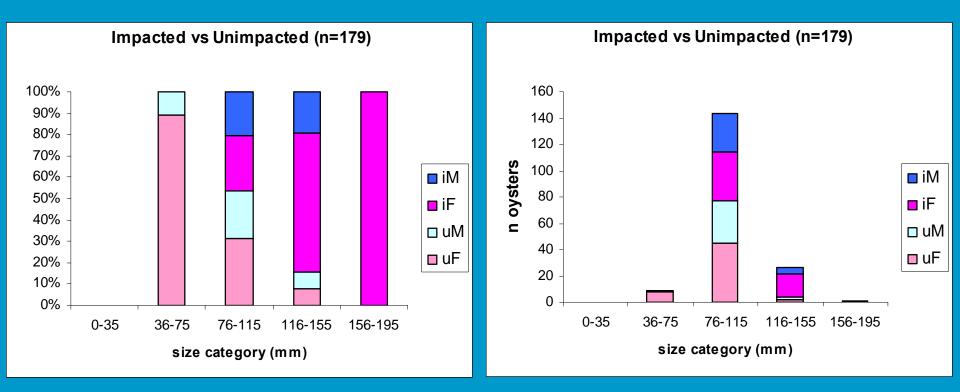




Locations of wastewater treatment plant outfalls where bivalve samples were collected

Incidence of	SPECIES	IMPACTED	н	TOTAL N BY SPECIES
hermaphrodism	Cv	Y	0	180
-	Cv	Y	0	
Oyster	Cv	Y	0	
Oyster	Cv	N	0	
	Cv	N	0	
	Cv	N	0	
	lr	Y	0	180
Mussel	lr	Ν	0	
	lr	N	0	
	lr	Y	0	
	lr	Y	1	
	lr	Y	0	
	Ma	N	0	113
Soft clam	Ma	Ν	0	
Soft Claim	Ma	Y	0	
	Ma	Y	0	
	Тр	N	0	63
Razor clam	Тр	Y	0	
	Тр	Y	0	
Rangia clam	Rc	Y	0	10
				546

Ischadium recurvum hermaphrodite



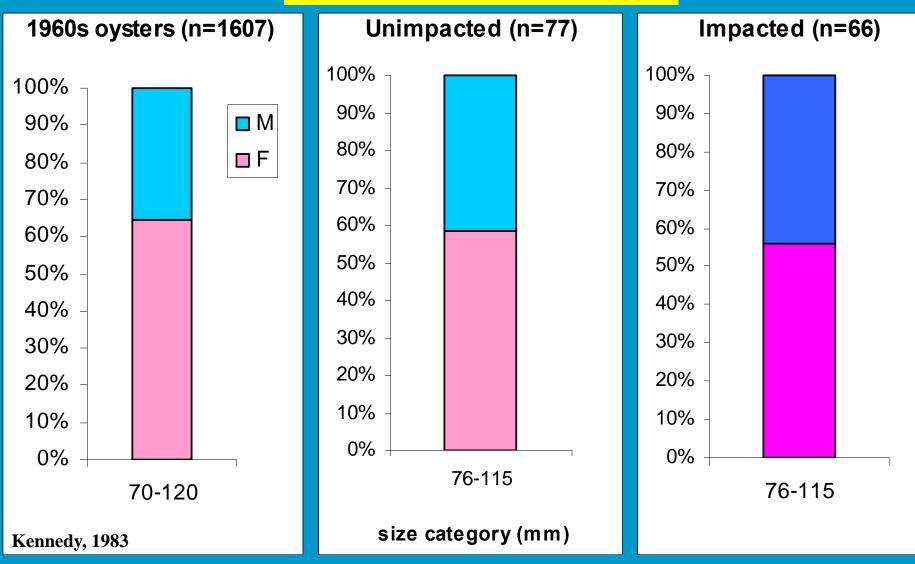
Size Effects

- Oysters are protandric hermaphrodites, often changing from male to female with age.
- Therefore, the proportion of females is expected to be larger in larger (older) oysters.
- This may mask feminizing endocrine disruption effects, which also might be expected to have greater manifestations the longer oysters are exposed.

Oyster Size Distribution

Sex ratio comparisons for all oysters

SPECIES	OUTFALL	IMPACTED	F:M RATIO	M EAN SHELL HEIGHT	M EAN F SHELL HEIGHT	MEAN M SHELL HEIGHT
Cv	А	Y	0.67	100	99	100
Cv	А	Ν	1.73	88	86	92
Cv	С	Y	2.75	119	121	112
Cv	С	Ν	1.50	99	99	98
Cv	CB	Y	2.63	97	98	95
Cv	CB	Ν	1.50	87	86	89


 ANOVA demonstrated that shell heights of impacted vs unimpacted samples at all sites are significantly different (p < 0.05).

Sex ratio comparisons for oysters 76 – 115 mm

SPECIES	OUTFALL	IM PACTED	F:M RATIO	p VALUE ΒΥ SITE (α=0.05)	p VALUE POOLED (α = 0.05)
Cv	А	Y	0.67		
Cv	А	Ν	1.78	0.089	
Cv	С	Y	2.67		
Cv	С	Ν	1.27	0.945	
Cv	CB	Y	2.38		
Cv	CB	Ν	1.25	0.260	
Cv	pooled	Y	1.28		
Cv	pooled	Ν	1.41		0.774

• All p values > 0.05; no significant differences in sex ratios

Sex ratio comparisons with historic oysters

Sex ratio comparisons with historic oysters

TYPE	IMPACTED	F:M RATIO	p VALUE (α=0.05)
I	Y	1.28	0.156
U	Ν	1.41	0.271
н	Ν	1.82	

• All p values > 0.05; no significant differences in sex ratios

Sex ratio comparisons

for other species

SPECIES	OUTFALL	IMPACTED	F:M RATIO	p VALUE ΒΥ SITE (α=0.05)	p VALUE POOLED (α=0.05)
lr	А	Y	1.31		
lr	А	Y	1.73	0.60	
lr	А	Ν	1.31	0.76	
lr	С	Y	1.31		
lr	С	Ν	1.31	1.00	
lr	CB	Y	1.07		0.95
Ma	А	Y	0.80		
Ma	А	Ν	0.93	0.80	
Ma	С	Y	1.00		
Ma	С	Ν	0.81	0.70	0.90
Тр	А	Y	2.00		
Тр	С	Y	0.71		
Тр	С	Ν	1.00	0.51	0.62

- No evidence of delayed gametogenesis in adults
- No evidence of endocrine disruption as reflected by the presence of hermaphrodites
- No differences in oyster sex ratios between impacted and unimpacted sites, or between contemporary and historic samples, in age 2 oysters.
- No evidence of endocrine disruption as reflected in sex ratios for the other 3 species examined

Suggestions for further study

- Identify and quantify endocrine disrupting compounds in outfalls, and their environmental concentrations over time and space, to better define and select control and treatment sites.
 - Dye studies
 - Monitoring concentrations of selected endocrine disruptors
- Caging studies at outfalls and control sites

 Duration consistent with lifespan and reproductive cycle of the species tested

Suggestions for further study

- Laboratory exposures to environmentally relevant concentrations of effluents or cocktails.
- Examine biomarkers of gametogenic activity
- Investigation of multiple generations
 - Gamete viability and fertilization success
 - Larval survival

Acknowledgments

- Elizabeth Haskins, Maryland Department of Environment, for WWTP outfall locations and map
- Linda Barker, Maryland Department of Natural Resources, for statistical guidance
- Maryland Department of Natural Resources, Fisheries Service, for funding