

EDC effects in bivalves: Are our oysters at risk?

Patricia D. McClellan-Green North Carolina State University Department of Environmental & Molecular Toxicology Center for Marine Sciences and Technology

Thanks to those who have contributed to this work

Dr. Eva Oberdörster

Dr. Jocelyn Romano

Robin Sewiers

Mari Hawkins Megan Phifer Weston Smith Joshua Osterberg

US EPA Star Grant Oak Foundation Florida Fish and Wildlife North Carolina Sea Grant

Invertebrates

- 95% of all known species are invertebrates (30+ phyla)
- Molluscs are the second most abundant invertebrate group (>130,000 species)
 - 5 major classes (bivalves, cephalopods, polyplacophorans (chitons), scaphopods (tusk shells) and gastropods)
- Bivalves are very diverse (>15,000 species)

What are Endocrine Disruptors

Exogenous agents that interfere with

- Synthesis

- Secretion
- Transport
- Binding
- Action
- Elimination

of hormones in the body

Types of Hormones

- Glycoproteins ?
- Polypeptides
- Peptides
- Steroids
- Modified amino acids ?
- Catecholamines ?
- Prostaglandins
- Retinoic acid

Role of environmental cues on development and reproduction in mollusks

Historical Reports of Steroid Function in Molluscs

- 1969—E₂ injection in oysters (*Crassostrea gigas*) causes reversal of males to females
- 1996—T induces penis growth in Female gastropods

{Ⅲ

- 1999—E2 injections induces vitellin-like protein in *Mya arenaria*
- 2003—E₂ induces vitellin in scallops (*Patinopecten yessoensis*)
- 2003—E₂ reduces serotonin and increases monoamine oxidase activities (involved in sexual differentiation) in *Elliptio complanata* (freshwater mussel)
- 2004—EE₂ increases embryo production in freshwater mudsnail *Potamopyrgus antipodarum*
- 2007—Mixture (E₂, EE₂, NP, OP) induces ovotestis in male *Scrobicularia plana* and increases oocyte diameter in females

Endocrine disruptor effects in molluscs

 1970—TBT causes developmental abnormalities and shell thickening of oysters and induces imposex in *N. Iapillus* (since has been shown to have similar effect in at least 150 species of mollusk)

•1986—TBT causes masculinization and larval reduction in *O. edulis, M. edulis, S. plana* and *M. mercenaria*

•1999—Nonylphenol and octylphenol induce vitellin-like protein in *Mya* arenaria

•2000—Bisphenol A or octylphenol increases egg production in *M. cornuarietis* and creates "superfemales" in *N. lapillus*

•2000—Bisphenol A increases embryo production in female and reduction of sperm in male *N. lapillus*

•2001—pp'DDT induces premature spawning and oocyte degeneration in *D. polymorpha*

•2003—Nonylphenol exposure of *C. gigas* D-larvae between days 7-8 pf produced significant number of hermaphrodites and skewed sex ratio towards females

Affect of EDCs on Reproduction in Gastropods

Influence of different environmental chemicals on reproductive capacity (gastropods)

Collecting Oyster Hemolymph

Diuron effects on PO activity (*in vitro*)

Triclosan effects on PO activity (*in vitro*)

Tropolone effects on PO activity (*in vitro*)

What happens if you expose whole organism?

Contaminate effects on oysters in vivo?

Hypoxia effects on PO activity (*in vivo*)

Triclosan effects on PO activity (*in vivo*)

What about other contaminants?

What about other contaminants?

Reproduction (in progress)

Immune responses (in progress)

Field Sites

Field Sites

Field Sites

Reproductive capacity of gastropods in field exposures

Do Environmental Pollutants Affect Oysters?

Do Environmental Pollutants Affect Oysters?

Primary Controls

➤Temperature

Day Length

Water Chemistry

Organism Interactions

Development Reproduction Metabolism Behavior Physiology

Mollusc Model

Adapted from presentation by P. Thomas

Environmental Stimulation (seasonal cue)

Sense Organs → ^O ^O ^O ^O ^O Peuroganglia SMF/ELH other neuropeptides

Female gonad

Androgens Progestins Estrogens

ASO

Hepatopancreas

Yolk Proteins vitellogenin and vitellin-like

Alternative Controls

Environmental Stressors

Growth

Metamorphosis

Development

Toxic Chemicals

Disease

Enzymatic changes

Are our oysters at risk?

- Know: Molluscan endocrine systems are extremely varied.
- Know: Mechanisms (or at least processes) are conserved across phyla
- Know: Environmental endocrine disruptors do affect oysters—but you have to do your homework on the basic mechanisms that are affected.

Oyster Testosterone Metabolites

Steroid Biosynthetic Pathway in Molluscs

Gottfried and Dorfman 1970

Six Degrees of Contamination

Air Emerging Contominants Endocrime Disruptors TTTTTTT Water leaching Soil ood chain food ...> biodegradation Filter feeders F ... chain Wildlife ..7 food chain sediment benthic organisms biodegradation biodegradation Chemical degradation leaching Pesticides Aquifer

Patricia McClellan-Green, Ph.D. Environmental & Molecular Toxicology

NC STATE UNIVERSITY